Stability of a Mixed Type Functional Equation on Multi-Banach Spaces: A Fixed Point Approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach

Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces:begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) =(n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n}f(x_{i}).end{equation}

متن کامل

A fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces

In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$

متن کامل

A Fixed Point Approach to the Stability of a Mixed Type Additive and Quadratic Functional Equation

In this paper, we investigate the stability problems for a functional equation f(ax + y) + af(x − y) − a2+3a 2 f(x) −a(a−1) 2 f(−x)− f(y) − af(−y) = 0 by using the fixed point method. Mathematics Subject Classification: Primary 39B82, 39B62; Secondary 47H10

متن کامل

Stability of the Jensen–type functional equation in ternary Banach algebras: An alternative fixed point approach

Using fixed point methods, we prove the generalized Hyers–Ulam–Rassias stability of ternary homomorphisms, and ternary multipliers in ternary Banach algebras for the Jensen–type functional equation f( x+ y + z 3 ) + f( x− 2y + z 3 ) + f( x+ y − 2z 3 ) = f(x) .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2010

ISSN: 1687-1812

DOI: 10.1155/2010/283827